▲课本上的细胞内部图和新概念细胞内部图(图片来源:OpenStax/Wikimedia & UC San Diego Health Sciences)
当下,想要看清楚细胞内部的细节主要依靠两种途径:荧光显微成像和生物物理联系,前者通过给蛋白带上荧光标记物,然后在显微镜下观察蛋白的位置和联系。后者则包括亲和纯化和质谱技术,需要使用抗体将特定蛋白拉出细胞,最后分析蛋白上还结合着哪些分子。
两种方式分别产生了包括大量细胞细节的数据库——人类蛋白质图谱(HPA)和BioPlex,但它们又有着各自的区别。显微成像可以观察到微米级别的水平结构,让我们看到和细胞器相关的蛋白标志。生物物理联系则可以找到蛋白与蛋白之间的相互作用和纳米级的细节。
▲预测的蛋白单位和实际几乎一样(图片来源:参考资料[2])
除此之外,AI找到的这近70个蛋白社群中,几乎有一半是我们从未发现过的,比如有一组蛋白能够形成一种未发现过的结构。
许多疾病的根源都是细胞内部的功能混乱,无论是蛋白表达异常导致的肿瘤,还是线粒体异常导致的代谢性疾病,都有许多细节等待人们去发现,前提是我们能清楚地知道细胞内部有哪些蛋白和分子,这样才不会错过一些关键的线索。
MuSIC现在并没有分析每个蛋白所处的具体位置,因为它们所处的位置可能是流动性的。“下一步我们需要在更多的人类细胞系中进行测试,”研究的通讯作者Trey Iderk教授表示,“最终我们或能通过比较正常和异常细胞找到许多疾病的根源。
参考资料:
[1] We might not know half of what’s in our cells, new AI technique reveals. Retrieved Nov 24th, 2021 from https://www.eurekalert.org/news-releases/935756
[2] Yue Qin, Edward L. Huttlin, et al. A multi-scale map of cell structure fusing protein images and interactions. Nature. DOI: 10.1038/s41586-021-04115-9
免责声明:药明康德内容团队专注介绍全球生物医药健康研究进展。本文仅作信息交流之目的,文中观点不代表药明康德立场,亦不代表药明康德支持或反对文中观点。本文也不是治疗方案推荐。如需获得治疗方案指导,请前往正规医院就诊。