订阅| 收藏 (2953)
查看TA的全部帖子>>
您需要 登录 才可以下载或查看,没有账号?立即注册
“这波大潮来了,没有人会无动于衷。在成立探维前,我们都已经工作了好几年,被技术与市场碾压过几轮,很多事情已经考虑得非常充分。”
“在华为没有明确说要上固态激光雷达之前,其实整个产业都呈一个观望状态。那时机械式雷达‘统治’自动驾驶市场,而固态路线不仅存在一堆技术问题,还没有市场。”
“求存肯定是要先求存,但好在几个合伙人都‘轴’,对,我们就是不改路线。如果说我们哪里最特别,可能是我们从来没改过技术路线,我们就是要做固态。”
“确切地说,2018~2019年是车厂的学习期,那时不少国内外车厂建立了激光雷达项目组,广招人才,研究到底上激光雷达要怎么用,包括‘装在什么位置’。”
“而且车厂问我们的问题,通常简单粗暴——你价格能比XX便宜多少?”
“2017年奥迪用Scala激光雷达的时候,车规究竟是什么样子,其实也是奥迪自己说了算。当然,在环境稳定性方面会有一个行业共识,毕竟摄像头和毫米波雷达都要做环境稳定性测试。 但激光雷达在车上的检测率、识别效果,甚至是与摄像头等多种传感器的配合度,其实行业并没有统一的性能评测标准。”
“激光雷达比我们想像得要复杂太多,扫描部分在激光雷达结构里的占比其实并不高。而激光器与接收器,都在经历着跟成本与性能密切相关的技术变革。”
“简单说,就是用低成本、更稳定的单轴,做到了多线的感知效果。”
“大多有自动驾驶业务或团队的公司,在做传感器数据融合时,都采用的后融合处理方案——摄像头生成图像的数据,激光雷达生成自己的点云数据,分别做感知,再交给主处理器做融合。”
“但这种方法精度有很大问题,车上不同位置的传感器在空间与时间上很难对齐。而且一旦图像出现误识别,你就得去检查一下激光雷达的‘看法’,如果后者给了一个相反的判断,那么你该选择谁?这事儿永远都得人为介入,或者预先制定规则,但也难免发出错误指令。”
“假设在你手上有个手机,激光雷达只能看到手机一个角,摄像头只能看到第二个角,毫米波雷达可以看到第三个角。如果用后融合算法,由于每个传感器只能看到一部分,因此物体非常有可能不被识别,最终被滤掉。但在前融合中,由于它集合了所有数据,相当于可以看到这个手机的三个角,那对于前融合来说,是非常容易能够识别出这是一台手机的。”
“与汽车不一样,卫星有个苛刻的客观前提:你一旦发射了,就很难再去修正一些问题。这也就要求我们当时必须做到,让产品在无人化状态下实现一切自动化有序工作。”
“我们当时做国家项目,不可能都像哈勃望远镜一样,不断发新卫星去维修,因此就必须保证卫星在无人状态下自动化处理信息。而这就是我们当初采用‘前融合’技术的另一个重要原因——必须让系统自己明白,怎样让像素与点云数据自动匹配起来。”
“激光雷达从一开始的4线、8线,再到16线、32线、64线以及128线,后面有没有可能出现214线、512线?不太可能,因为这不仅耗费时间,厂商也要考虑线数与成本的平衡。”
“我们回想当初做项目的一些细节,其实就考虑过这个问题。譬如发现有些微小物体上的激光非常稀疏。那么在前融合状态下,感知系统会‘自发’去倚重摄像头做识别,这时候,激光雷达的分辨率大幅降低其实也没问题。”
“新势力会走得相对快,不少车厂对前融合也很感兴趣。” 跟车厂近期密切接触的王世玮,感受到了来自车厂端的剧烈变化,和越来越多的软件层痛点。 “我们发现其实客户对于无需标定的‘数据融合’感受非常强烈。有车厂这块儿的工程师吐槽说空间匹配精度不够,尤其是高速场景,失误很多,因此诉求也很多。”
“坦率讲这不是我们的优势,因为现在体量还不算大,如果产能迅速扩大,我们还会遭遇验厂、良率、交付等一系列生产上的挑战。”
本版积分规则 发表回复 回帖后跳转到最后一页
查看 »